On the arclength of trigonometric interpolants
On the arclength of trigonometric interpolants
Blog Article
As pointed out recently by Strichartz [5], the arclength of the graph (Gamma(S_N(f))) of the partial sums (S_N(f)) of the Fourier series of a jump function (f) grows with the order of apple silk sarees (log N).In this paper we discuss the behaviour of the arclengths of the graphs of trigonometric interpolants to a jump function.Here the boundedness duramax spade tuner of the arclengths depends essentially on the fact whether the jump discontinuity is at an interpolation point or not.In addition convergence results for the arclengths of interpolants to smoother functions are presented.